

Elastic Resource Adaptation in the OpenStack Platform

Pedro Martinez-Julia, Ved P. Kafle, Hiroaki Harai ペドロ・マルティネスフリア、ベド カフレ、原井 洋明

Network Science and Convergence Device Technology Laboratory, Network System Research Institute
National Institute of Information and Communications Technology (NICT)

{pedro,kafle,harai}@nict.go.jp

IEICE Technical Committee on Network Virtualization (NV) 7 March 2018

Outline

- Problem Statement:
 - Motivation and Research Topic
 - Use Case
- Solution:
 - Proposed Approach
 - Architecture Overview
 - Requirement Anticipation
 - Integration with ETSI-NFV-MANO.
- Conclusions & Future Work

Motivation and Research Topic (I)

Trivia:

"High variation in resource demand" vs "Fixed resource allocation".

Motivation and Research Topic (II)

Trivia:

"High variation in resource demand" vs "Fixed resource allocation".

Motivation and Research Topic (III)

Trivia:

Motivation and Research Topic (IV)

Trivia:

Virtual computer and network systems can be <u>dynamically dimensioned</u> to:

- Improve resource utilization.
- Reduce CAPEX.

Dynamic Environme

vs "Fixed resource allocation".

Automated solutions aim to set the **optimum dimension** for <u>every situation</u>:

- Approach increased system complexity with *intelligent* and *intelligence* methods.
- Reduce both OPEX and CAPEX.

Use Case (I)

Use Case (II)

Use Case (III)

OpenStack:

- Facilitates the construction of virtual computer and network sytstems.
 - It is widely used to create production-ready *virtualization environments*.
- Enables the **adaptation** of resources:
 - On-demand instantiation or removal of VMs attached to a service.
- Offers application interfaces:
 - Monitoring and resource adaptation.
- Supports NFV.
- Its operation will be **enhanced** by the results of our research work.

Use Case (IV)

Use Case (V)

Use Case (VI)

Most changes in requirements are linked to events from outside the system:

- User response can be derived from <u>event occurrence</u>.
- Required <u>resources</u> can be <u>anticipated</u> to reduce adaptation <u>delay</u> by noticing the events as soon as they occur.
- The system can be adapted <u>before</u> the client request <u>burst</u> actually <u>reaches</u> the <u>servers</u>.

Proposed Approach (I)

Proposed Approach (II)

Proposed Approach (III)

Proposed Approach (IV)

Proposed Approach (V)

Proposed Approach (VI)

Proposed Approach (VII)

Control Actions

Resource Anticipation Strategy

- Functional and performance target:
 - Anticipate the amount of resources that a controlled system will require <u>before it becomes effective</u>.
- Involve external event detectors:
 - Physical: Things (IoT)
 - BigData
- Learn the event/reaction correlation:
 - Predict user behavior.
 - Correct mistaken predictions:
 - Improve and optimize learned model...
- Limit the memory used by the learning algorithm:
 - Keep only the most relevant vectors.
- Fast adaptation to big changes:
 - Discard old vectors when resizing.

Control Flow

- Two key controlled parameters:
 - Current Resource Amount (CRA).
 - Minimum Resource
 Amount (MRA).
- Two concurrent sub-routines:
 - Anticipation.
 - Threshold checking and correction.
- Self-assessed learning process:
 - Correcting learned data when finding mistakes...

Algorithm (I)


```
1: procedure CONTROL(detectors, resources)
       mra \leftarrow MIN RESOURCES
 2:
 3:
       cra \leftarrow mra
       anticipator \leftarrow \text{LEARNERCREATE}(MIN\_RESOURCES, MAX\_RESOURCES)
 4:
       ant\_severity, ant\_time, ant\_peak, ant\_peak\_rel\_time \leftarrow 0, 0, 0, 0
 5:
       severity, pseverity, load, drate \leftarrow 0, 0, 1, 0
 6:
       attl\_model \leftarrow LearnerCreate(MIN\_ATTL, MAX\_ATTL)
 7:
 8:
       while TRUE do
          severity \leftarrow CollateSensorReadings(Collect(detectors, SEVERITY))
9:
          load \leftarrow CALCULATEAVGLOAD(COLLECT(resources, LOAD))
10:
          drate \leftarrow \texttt{CALCULATEAVGDROPRATE}(\texttt{COLLECT}(resources, DROP\_RATE))
11:
          if ant\_severity \neq 0 then
12:
             demand \leftarrow cra * \frac{load + drate}{SERVER\_WORK\_QCAP}
13:
              if demand > ant peak then
14:
                 ant peak \leftarrow demand
15:
                 ant\_peak\_rel\_time \leftarrow (NOW - ant\_time) * 1.25
16:
              end if
17:
              if NOW-ant\_time > LEARNERGET(attl\_model, ant\_severity) and load < LT then
18:
                 19:
                 LEARNERSET(attl_model, ant_severity, ant_peak_rel_time)
20:
                 ant severity \leftarrow 0
21:
                 ant time \leftarrow 0
22:
                 mra \leftarrow MIN RESOURCES
23:
              end if
24:
25:
          end if
```

Algorithm (II)


```
if severity \neq 0 and severity \neq pseverity then
26:
                ant\_severity \leftarrow severity
27:
                ant\_time \leftarrow NOW
28:
                ant\_peak \leftarrow 0
29:
                mra \leftarrow \text{LearnerGet}(anticipator, severity)
30:
31:
            end if
32:
            pseverity \leftarrow severity
33:
            nra \leftarrow cra
            if load > HT or cra < mra then
34:
               nra \leftarrow \text{MIN}(\text{MAX}(cra + INC, \frac{load * cra}{HT}, mra), MAX\_RESOURCES)
35:
36:
            end if
            if load < LT then
37:
               nra \leftarrow MAX(nra - DEC, mra, MIN\_RESOURCES)
38:
            end if
39:
            if nra \neq cra and NoSideEffect(nra) then
40:
41:
               cra \leftarrow nra
                Enforce(cra)
42:
            end if
43:
        end while
44:
45: end procedure
```

Alignment With ETSI-NFV-MANO (I)

Alignment With ETSI-NFV-MANO (II)

Alignment With ETSI-NFV-MANO (III)

Alignment With ETSI-NFV-MANO (IV)

Alignment With ETSI-NFV-MANO (V)

Conclusions & Future Work

- Designed ARCA:
 - To provide functions of the Virtual Infrastructure Manager (VIM) of NFV-MANO.
 - Extended <u>VIM_interfaces</u> to meet requirements of the <u>real world</u>:
 - Sport events, TV shows, emergency scenarios...
 - Achieved good perfomance within an OpenStack-based deployment:
 - Detailed overlying and underlying infrastructures.
 - Reproduction of <u>production-like environments</u> to ensure <u>transferable research results</u>.
- SDN/NFV and OpenStack <u>stakeholders</u> will <u>benefit</u> from ARCA features:
 - Efficient use of resources:
 - Further reduce CAPEX and OPEX:
 - Benefit to <u>both</u> infrastructure <u>providers</u> and <u>consumers</u>.
- Next steps:
 - Keep reducing ARCA response time.
 - Increase complexity of the validation scenario:
 - Mix clients and servants in the same domains.
 - Align ARCA-based VNC to additional equirements from NFV/SDN.

Thanks for Your Attention

-EOF-